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1. Introduction

It is impossible to trisect an arbitrary angle. So mathematicians have claimed,
with confidence, for more than 160 years. The statement is provocative. To a
mathematician, the statement embodies the beauty of algebra and its applications
to geometry, hints at Galois theory, and is a rare example of a statement of the
nonexistence of a solution. To recreational mathematicians, it is often thought of
as a challenge. Every year, mathematicians around the world receive letters from
the general population making claims to the contrary. Their solutions fall into two
main categories: they are either false or do not adhere to the rules of constructions.
In our provocative statement, we often omit the qualifying phrase using only a

straightedge and compass. This is a restriction whose popularity is most probably
due to the writings of Plato (ca. 427 – 347 B.C.)[6]. But according to Pappus (late
3rd century, A.D.), the ancient Greeks (ancient already to him) classified problems
in geometric construction into three types. A problem is called plane if it can be
solved using only a straightedge and compass; it is called solid if it can be solved
using one or more conic section(s); and it is called linear if the solution requires a
more complicated curve. In particular, the ancient Greeks had already found solid
solutions to the trisection problem, as well as to the problem of doubling the cube.
They suspected that neither problem was plane, a fact that was finally established
by Pierre L. Wantzel (1814 – 1848) in 1837 (though some have argued that Gauss
must have known how to do this soon after writing Disquisitiones in 1798 [4, 5]).
I find this classification very intriguing, for it reflects a point of view that is

appealing to modern algebraic geometers. The ancient Greeks somehow observed
that the simplest problems are those that can be solved using quadratics, and that
the next simplest class is the class of problems solvable with quadratics and cubics.
Even their terminology (with the exception of “linear”) is very appropriate. The
terms “plane” and “solid” are meant to suggest the two-dimensional and three-
dimensional natures of the solutions. Thus, a plane construction should involve
equations of degree two, and a solid construction should involve equations of de-
gree three. The modern mathematician might be tempted to partition the linear
problems (a poor choice of terminology) further into algebraic and transcendental
problems, but we would probably do little more.
I also find it intriguing that this classification scheme does not obviously include

the following trisection algorithm, due to Archimedes (287 – 212 B.C.).

c©Mathematical Association of America.
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Theorem 1.1 (Archimedes’ Trisection Algorithm). If we are in possession of a
compass and a straightedge that is notched in two places, then it is possible to
trisect an arbitrary angle.
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Figure 1.

Proof. We show how to trisect an acute angle. This is enough, since we know it
is possible to trisect a right angle using only a straightedge (without notches) and
compass, and an obtuse angle is the sum of a right angle and an acute angle. So,
given an acute angle α with vertex O, construct the circle centered at O and with
radius d, where d is the distance between the two notches on our straightedge. Let
α = ∠AOB for points A and B on this circle, as in Figure 1. Draw the line OA.
Arrange the straightedge so that one notch is on the circle, the other notch is on the
line OA on the opposite side of O from A, and the straightedge goes through the
point B (this is the step that does not adhere to the plane rules of constructions).
Let the points at the notches be Q and R, and let β = ∠RQO. The triangle ∆RQO
is isosceles, since |RQ| = |RO| = d. Thus ∠ROQ = β, hence ∠BRO = 2β. Since
∆ROB is also isosceles, ∠RBO = ∠BRO = 2β, so ∠ROB = π−4β. Summing the
angles at O, we get

β + (π − 4β) + α = π,
which implies that

α = 3β.
Thus, we have trisected the angle α. �
Discovering how this algorithm fits into the classification scheme is exactly the

sort of analysis a modern algebraic geometer would attempt in order to understand
what other problems can be solved using a twice-notched straightedge. In this
paper, we will briefly study solid constructions and show that a point has a solid
construction if and only if it lies in a 2-3-tower over Q. That is, the point (x, y) has
a solid construction if and only if, when represented as a complex number x + iy,
it lies in a subfield K of C for which there exists a finite sequence of subfields
K0,K1, ...,Kn satisfying

(1) Q = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K

and the index [Kj : Kj−1] at each step is 2 or 3. This result is not new (see
Videla [14]). We will then study constructions using a compass and twice-notched
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straightedge. With the aid of Theorem 1.1 and a result due to Nicomedes, we will
demonstrate that every point that has a solid construction can be constructed using
a compass and twice-notched straightedge. Thus, the twice-notched straightedge is
at least as powerful a tool as a conic drawing tool. We will demonstrate that every
point constructible with a compass and twice-notched straightedge lies in a tower
of fields over Q (a sequence of nested fields as in (1)) in which the degree of the
extension at each step is 2, 3, 5, or 6. Consequently, it is not possible to construct
a regular 23-gon or 29-gon using only a compass and twice-notched straightedge.
Finally, we will employ these tools to construct several points whose x-coordinates
are roots of a quintic that is not solvable by radicals.

2. Plane Constructions

Let us begin by reviewing briefly the rules for constructions that use only a
straightedge and a compass. A more detailed treatment appears in [2].
We start with two points O and P , which we declare constructible. Given two

constructible points A and B, we can construct the line through A and B, and the
circle centered at A that passes through B. The points where (distinct) constructed
lines and circles intersect are called constructible points.
The classical algebraic analysis of plane constructions goes as follows. We put

a Cartesian coordinate system on our plane, choosing O to be the origin and P to
be the point (1, 0). A point (x, y) in the plane can be represented by the complex
number x + iy. A complex number x + iy is called a constructible number if the
point (x, y) is a constructible point. It is not difficult to verify that, if A and B
are constructible numbers, then so are A+B, −A, AB, and 1/A (for A �= O). As
a result, the set of constructible numbers forms a field (sometimes called the surd
field).
A construction C is a finite set of points C = {O,P,A1, ..., An} such that Ak+1

is a point of intersection of lines and/or circles constructed from the points in the
subconstruction Ck = {O,P,A1, ..., Ak}. For a construction C, let us define K[C] to
be the smallest field containing C and i that is closed under complex conjugation.
It is not too difficult to verify that K[Ck][Ak+1] is of degree 1 or 2 over K[Ck].
Note that C0 = {O,P} and K[C0] = Q[i], which is of degree 2 over Q. Thus, every
constructible number lies in a field that is in a 2-tower over Q.
Furthermore, since we can bisect angles and find the square roots of lengths, we

can solve general quadratic equations, so every number that lies in a 2-tower over
Q is, in fact, constructible.
Though we often associate this result with Galois theory, all that is required

for its proof is an understanding of fields and degrees of field extensions, concepts
that were articulated by Niels Henrik Abel (1802 – 1829). Though Evariste Galois
(1811 – 1832) died only a short time after Abel and well before the publication of
Wantzel’s paper, Wantzel would not have been aware of Galois’s work because the
bulk of it was not published until 1846.

3. Solid Constructions

In solid constructions, we allow for the use of a (possibly only hypothetical)
conic drawing tool. Given a constructible point A, a constructible line l, and a
constructible length e, we are permitted to draw the conic section with focus A,
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directrix l, and eccentricity e. The constructible points in this context are then the
points where a pair of (distinct) constructible lines, circles, or conics intersect.
In particular, we can draw the parabola y = x2. Consider the circle that is

centered at (a, b) and goes through the origin. This circle has the equation

(x− a)2 + (y − b)2 = a2 + b2.
If a point (x, y) �= (0, 0) also lies on the parabola y = x2, then

(x− a)2 + (x2 − b)2 = a2 + b2,
x2 − 2ax+ x4 − 2bx2 = 0,

x3 + (1− 2b)x− 2a = 0.(2)

Thus, given real values a and b, we can construct the real roots of the cubic in (2).
In particular, given a length r, we can find 3

√
r by setting a = −r/2 and b = 1/2.

Hence, we can double the cube.
Trisecting angles is a little more complicated. We can trisect a given angle α if

we can construct x = eiα/3, which satisfies the equation

x3 − eiα = 0.

Note that
x−3 = e−iα,

which gives
x3 + x−3 = 2 cosα,

a quantity that is constructible using plane tools. Let ω = x + x−1 = 2 cos(α/3).
Then

ω3 = x3 + 3x+ 3x−1 + x−3

= 3ω + 2 cosα,

whence

(3) ω3 − 3ω − 2 cosα = 0.

Since this equation has real constructible coefficients, we can construct the real
roots ω of (3) and use the appropriate root to construct the angle α/3.
Since we can trisect angles and find the cube roots of lengths, we can find the

cube root of any constructible complex number. In light of Cardano’s and Ferrari’s
formulas expressing the solutions to cubics and quartics in terms of radicals[13],
we can construct the roots of any cubic (or quartic) equation with constructible
coefficients. Hence, any number in a 2-3-tower over Q has a solid construction.
Conversely, suppose we have a solid construction C = {O,P,A1, ..., An}. Then

the point Ak+1 is a point of intersection of lines, circles, or conic sections created
from the points in Ck. That is, Ak+1 is a point of intersection of lines, circles, or
conic sections described by equations with coefficients in K[Ck]. Since two conic
sections intersect in at most four points, it is not surprising that the point Ak+1

is a root of a (possibly reducible) quartic polynomial in K[Ck][x], a fact that is
easy enough to verify (see Videla[14] for details). As a consequence, Ak+1 is in a
2-3-tower over K[Ck] (of degree at most 12), and it follows that any point with a
solid construction lies in 2-3-tower over Q.
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Figure 2. A solid construction of the regular 7-gon. We con-
struct the circle centered at

(
7
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5
3

)
that goes through the origin.

We drop a perpendicular from a point of intersection of this circle
with the parabola y = x2, to find the point (ω + 1/3, 0). We find
the point (ω/2, 0) and the perpendicular to the x-axis through this
point. This perpendicular intersects the unit circle at two of the
seven points of a regular 7-gon. We use those points to find the
rest of the vertices.

Example. The regular 7-gon has a solid construction, a fact that was known to
Archimedes [8]. To construct it, we must construct x = e2πi/7, which satisfies the
equation

x7 − 1 = (x− 1)(x6 + x5 + x4 + x3 + x2 + x+ 1) = 0.
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Let ω = x+ x−1 = 2 cos(2π/7). Then

ω3 = x3 + 3x+ 3x−1 + x−3,

ω2 = x2 + 2 + x−1,

so
ω3 + ω2 − 2ω − 1 = 0.

To exploit (2), we complete the cube. That is, we make the substitution z = ω+1/3,
so that

(z − 1/3)3 + (z − 1/3)2 − 2(z − 1/3)− 1 = 0,

which simplifies to

z3 − 7
3
z − 7

27
= 0.

We therefore choose (a, b) = (7/54, 5/3) and proceed as indicated in Figure 2.

4. Twice-notched Straightedge Constructions

The classification of constructions is based on the intersection of curves. Though
constructions using a twice-notched straightedge do not in any obvious way involve
the intersection of curves, with a little thought we can find an appropriate inter-
pretation. For example, in Archimedes’ trisection algorithm, suppose that we do
not restrict Q to lie on the line OA, but instead allow it to trace out a curve as the
point R moves around the circle in such a manner that the line QR always passes
through B.

R

Q

B

AO

α 

Figure 3. The limaçon interpretation of Archimedes’ trisection algorithm.

Let us change our vantage point. Let B be the origin, let d = 1, and let the
circle have the equation r = 2 cos θ in polar coordinates. Then Q is a point at a
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distance 1 away from a point R on the circle, so traces out the curve with polar
equation

r = 1 + 2 cos θ.

This curve is known as a limaçon, a variation on the cardioid and a frequent guest
in calculus texts (see Figure 3).
Alternatively, we can let Q move along the line OA and consider the curve traced

out by R. Again, if we choose the origin at B and rotate the axes so that the line
has the equation r = a sec θ for a = sinα, then R traces out the curve described by

r = a sec θ − 1.

This curve is known as a conchoid (see Figure 4). The conchoid, sometimes referred

R

Q

B

AO

α 

Figure 4. The conchoid interpretation of Archimedes’ trisection algorithm.

to as the conchoid of Nicomedes, was studied extensively by Nicomedes (ca. 250
B.C.), who used it to double the cube and, more generally, find cube roots.

Theorem 4.1 (Nicomedes). Given a constructible length a, it is possible to find
3
√
a using a compass and twice-notched straightedge.

Proof. We first describe the procedure assuming that the notches are a unit distance
apart. Note that it is enough to find 3

√
a for a < 1 (since we can construct inverses).

We begin by constructing a rectangle OBCD with dimensions 2a and 2, as in
Figure 5, where |OP | = 1 and |OA| = a. The point E is constructed so that EA
is perpendicular to OA and |EB| = 1. The point F is constructed so that it is a
distance 2a away from O. We then construct the line l through B that is parallel to
EF . All these points are constructible using a compass and straightedge. For our
nonplane construction, we place one notch on the line l, the other notch on the line
OA, and adjust these points so that the straightedge passes through the point E,
giving the points G and H. In the language of curves, in this last step we construct
the conchoid r = sec θ + 1 using the coordinate system centered at E with x-axis
along the line EB. This conchoid intersects OA at H. We claim that the distance
x = |BH| is 2 3

√
a.

To analyze the algorithm, let us also draw the line HC that intersects OP at
J , and let y = |EG|. We begin by applying the Pythagorean theorem to triangles
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Figure 5. Nicomedes’ algorithm for finding cube roots (see Theorem 4.1).

∆AEB and ∆AEH:

a2 + |AE|2 = 1,

(x+ a)2 + |AE|2 = (1 + y)2,

x(x+ 2a) = y(y + 2),
x

y
=
y + 2
x+ 2a

.(4)

Since l is parallel to the side EF in ∆HEF , we know that

y

1
=
4a
x
.

Since ∆HBC is similar to ∆CDJ , we also know that

x

2a
=

2
|DJ | ,

so |DJ | = 4a/x = y. Because ∆HOJ is similar to ∆CDJ , we get

x+ 2a
2a

=
y + 2
y
,

y + 2
x+ 2a

=
y

2a
,

which combined with (4) gives
y

2a
=
x

y
.
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Substituting y = 4a/x, we obtain

4a
2ax

=
x2

4a
,

which implies that x3 = 8a, so 3
√
a = x/2, as claimed.

Finally, if the notches are a distance d apart, scale Figure 5 by d. Then x = 2d 3
√
a,

from which we can isolate 3
√
a using plane rules. �

As a corollary of the combined results of Archimedes and Nicomedes, we get the
following result:

Theorem 4.2. Every point that has a solid construction can be constructed using
a compass and twice-notched straightedge.

In other words, the twice-notched straightedge is at least as powerful a tool as
a conic drawing tool. In Section 6, we will show that it is, in fact, a superior tool.
To be more precise, there are some points that are constructible using a compass
and twice-notched straightedge but do not have solid constructions.

5. Limitations of constructions using a compass and twice-notched

straightedge

Let us first agree on the rules for constructions using a twice-notched straight-
edge. We start with a point O and use our twice-notched straight edge to draw a
point P whose distance from O is the same as the distance between the notches.
Hence, the distance between the notches is 1. In plane constructions, constructible
points are the points of intersection of constructible lines and circles, which we can
draw. The way we are using a twice-notched straightedge, we can construct the
point(s) of intersection of a conchoid or limaçon with a circle or line, but we cannot
actually draw these exotic curves. In particular, we cannot (in general) find the
points of intersection of two of these curves.
To further analyze the types of points that we can construct, we will need to

know the equations (in rectangular coordinates) of the conchoid and limaçon. We
begin with the conchoid.
The conchoid is created using a constructible point and line. Without loss of

generality, we may assume that the point is the origin O and the line is a vertical
line x = a, which has the polar equation r = a sec θ. If we place one notch on the
given line and make the straightedge pass through O, then as the designated notch
traverses the line, the other notch traces out one of the two curves whose polar
equations are

r = a sec θ ± 1.

The choice of plus or minus depends on whether or not the line is between the
second notch and the origin. Converting to rectangular coordinates, we get

r cos θ = a± cos θ,
x− a = ± cos θ,

(x− a)r = ±x,
(x− a)2r2 = x2,

(x− a)2(x2 + y2) = x2.(5)
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The curve described by (5) has degree four, so when we intersect it with a line, we
arrive at points whose x-coordinates are roots of quartic polynomials. This yields
nothing new, for quartics are solvable using square and cube roots.
When we intersect this curve with a circle, Bezout’s theorem tells us to expect

up to eight points of intersection. However, a general circle has the equation

(x− b)2 + (y − c)2 = s2,
so

(6) x2 + y2 = s2 + 2bx+ 2cy − b2 − c2.
Thus, when we intersect this circle with the curve given by (5), we get the equation

(7) (x− a)2(s2 + 2bx+ 2cy − b2 − c2) = x2,

which now has degree three. Hence, we get at most six points of intersection. Al-
gebraic geometers will recognize that, of the eight points of intersection guaranteed
by Bezout’s theorem (over P2(C)), two are at infinity.
Note that (7) is linear in y and that it can be rewritten as an equation of the

form
A(x)y = B(x),

where A(x) and B(x) are of degree two and three, respectively. This leads to

A(x)(y − c) = B(x)− cA(x),
A2(x)(y − c)2 = (B(x)− cA(x))2,

A2(x)(s2 − (x− b)2)− (B(x)− cA(x))2 = 0.

The polynomial in this last equation has degree six. Thus, if a, b, and c belong
to a field K and (x, y) is a point of intersection of the pair of conchoids and circle
described in (5) and (6), then x belongs to a field extension of degree at most six
over K and y belongs to a field of degree at most two over that.
The exotic curves that are produced using a point and circle are variations on

the limaçon. Again, without loss of generality, we may assume that the point is
the origin O and that the center of the circle is on the x-axis. We can therefore
represent the circle with the equation

(x− a)2 + y2 = t2,
which has the polar equation

r2 − 2ar cos θ + a2 = t2.

If we make the straightedge go through O while a notch traverses the given circle,
then the other notch traces out one of the two paths with polar description

(r ± 1)2 − 2a(r ± 1) cos θ + a2 = t2.

(Examples of such paths are shown in Figure 6.) We manipulate this expression as
follows:

r2 ± 2r + 1− 2ar cos θ ∓ 2a cos θ + a2 = t2,

r2 + 1− 2ar cos θ + a2 − t2 = ±(2a cos θ − 2r),

(r2 + 1− 2ar cos θ + a2 − t2)2r2 = 4(ar cos θ − r2)2.
Converting to rectangular coordinates, we get

(8) (x2 + y2 − 2ax+ 1 + a2 − t2)2(x2 + y2) = 4(x2 + y2 − ax)2.
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Figure 6. Generalizations of the limaçon – the curves traced out
by a notch while keeping the other notch on the circle and making
the straightedge go through the origin. In this example, the circle
has radius 5/4 and is centered at (4/3, 0).

This equation is of degree six, so intersecting with a line, we expect at most six
points. By Bezout’s theorem, we expect its intersection with a circle to yield twelve
points, but there are again a lot of points at infinity. Substituting (6) in the
appropriate places in (8), we obtain

(s2 + 2bx+ 2cy − b2 − c2 − 2ax+ 1 + a2 − t2)2(s2 + 2bx+ 2cy − b2 − c2)
= 4(s2 + 2bx+ 2cy − b2 − c2 − ax)2,(9)

which is now of degree three. Thus, the intersection of the generalized limaçon with
a circle gives a polynomial in x of degree six.
This polynomial can be found explicitly. We note that (9) is cubic in y, so the

problem is a bit more complicated than what we found for the conchoid. However,
we can extract from (6) an expression for y2 that is quadratic in x and linear in y.
We can use this to reduce (9) to an equation that is cubic in x but linear in y. We
then proceed as we did with the conchoid to get a polynomial in x of degree six.
As a consequence of the above analysis, we have shown:

Theorem 5.1. Suppose α in C is constructible using a compass and twice-notched
straightedge. Then α belongs to a field K that lies in a tower of fields

Q = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn = K

for which the index [Kj : Kj−1] at each step is 2, 3, 5, or 6. In particular, if
N = [K : Q], then the only primes dividing N are 2, 3, and 5.
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Remark. We do not need to include 4 as a possible index in Theorem 5.1. If
[Kj+1 : Kj ] = 4, then Kj+1 = Kj [β] for β a root of a degree four polynomial in
Kj [x]. We know that β can be expressed using square and cube roots, so we can
replace Kj+1 with the splitting field for the minimal polynomial for β and insert
subfields so that this new field lies in a 2-3-tower over Kj . On the other hand, if
[Kj+1 : Kj ] = 6 and Kj+1 = Kj [β], then the minimal polynomial for β might not
be solvable using radicals, whence Kj+1 may not exist in a 2-3-5-tower over Kj .

Corollary 5.2. It is not possible to construct a regular p-gon for p = 23 or 29
using only a compass and a twice-notched straightedge.

Proof. If we can construct the regular p-gon, then we can construct

ζp = e2πi/p,

which is the root of an irreducible polynomial of degree p− 1. By Theorem 5.1, ζp
lies in a field K of degree N over Q, where the only primes that divide N are 2, 3,
and 5. But Q[ζp] is a subfield of K, so p − 1 divides N . In particular, for p = 23,
N must be divisible by 11, and for p = 29, N must be divisible by 7. �

A more complete set of p-gons that are not constructible using these tools is
shown in Table 1.

6. Points without solid constructions

We will now show that there do indeed exist points that do not have solid
constructions but are constructible using a compass and twice-notched straightedge.
Let us choose the pair of conchoids generated by the origin and the line x = 2,

and intersect them with the circle centered at (1, 1) and with radius
√
5 (see Figure

7). That is, let us choose a = 2, b = c = 1, and s =
√
5 in (6) and (7). This gives

us the polynomial

x6 − 7x5 + 14x4 − x3 − 17x2 + 18 = 0.

We chose the circle so that it would go through the point (3, 0), which is on one of
the conchoids, so 3 is a root of this polynomial. Dividing by (x− 3), we get

f(x) = x5 − 4x4 + 2x3 + 4x2 + 2x− 6 = 0.

It is clear from Eisenstein’s criterion that this polynomial is irreducible. Accord-
ingly, the corresponding points of intersection lie in a field whose degree over Q is
divisible by 5, from which we infer that they have no solid construction.
Furthermore, the roots of f(x) cannot be expressed using radicals. To see this,

we first note that there are only three points of intersection (Figure 7), so the
polynomial f(x) has three real roots and two complex roots. It follows that complex
conjugation is an automorphism of the splitting field for f(x) that fixes three roots
and transposes the two complex roots; i.e., the Galois group for f(x) includes a
transposition. It also, of course, includes a five-cycle, and it is not too hard to show
that a subgroup of S5 that contains both a transposition and five-cycle must be all
of S5. Because S5 is not solvable, it follows from Abel’s classical result that f(x)
is not solvable by radicals.
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P1

P2

P3

O

1

(1,1)

Q

Figure 7. Three points P1, P2, and P3, which are constructible
using a compass and twice-notched straightedge, but whose x-
coordinate is the root of a fifth degree irreducible polynomial that
is not solvable by radicals. The point P1 is found by placing one
of the notches Q on the line y = 2, the other notch P1 on the cir-
cle centered at (1, 1), and adjusting so that the straightedge goes
through the origin.

7. Open questions

This study raises a number of questions that I have been unable to answer.

1. Is it possible to construct a regular 11-gon using a compass and twice-
notched straightedge?

2. Is it possible to construct the regular p-gons for p = 31, 41, or 61, using
only a compass and twice-notched straightedge? What about the 25-gon?
(See Table 1.)

3. More generally, are all quintics that are solvable by radicals, also solvable
using these tools?

We can answer Question 3 if we can construct the real roots of the following two
polynomial equations for any given real a and c:

x5 − a = 0,(10)

x5 + 5x3 − 25x+ c = 0.(11)

If we can construct the real root of (10), then we can construct fifth roots of lengths.
If we can construct the roots of (11), then we can divide any angle α into five equal
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pieces. To do so, we would choose c = 2 cosα. Equation (11) is derived in a fashion
similar to the derivation of (3).
To give readers an appreciation for the difficulty of Question 3, we issue them

the challenge of coming up with their own proofs of Nicomedes’ result. That is,
intersect the conchoid of (5) with a class of lines so as to give rise to cubic equations.
Then identify the appropriate line that allows one to solve for the cube root of
a length. My own attempts have given me a deeper admiration for Nicomedes’
accomplishment.
Here are a few more questions:
4. Is it possible to solve all quintics using a compass and twice-notched straight-
edge?

5. What degree six polynomials are solvable using a compass and twice-notched
straightedge?

6. A simpler question: Is it possible to construct a number ω that is the root
of an irreducible degree six polynomial not solvable by radicals?

Question 6 would probably make a good undergraduate project.
Finally, let me offer two more possible undergraduate projects: (1) We know that

it is possible to construct the regular 7-gon using a compass and twice-notched
straightedge. Find such a construction. (2) A ruler is a straightedge on which
there are rational markings. Prove that a ruler is equivalent to a twice-notched
straightedge.

Plane 3, 4, 5, 8, 16, 17, 32, 64
Solid 7, 9, 13, 19, 27, 37, 73, 81, 97
Open 11, 25, 31, 41, 61
No construction 23, 29, 43, 47, 49, 53, 59, 67, 71, 79, 83, 89

Table 1. A table of primes and prime powers pr with pr < 100,
identifying whether the pr-gon has a plane or solid construction,
whether it is not constructible using a compass and twice-notched
straightedge, or whether the existence of such a construction is an
open question.
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